您現(xiàn)在的位置: > 大學(xué)英語(yǔ)六級(jí) > hypocycloid hypocycloid的音標(biāo)是["ha?p??sa?kl??d],意思是擺線?;痉g為“擺線輪”。速記技巧可以考慮使用其英文發(fā)音的諧音“嗨破塞克羅”,便于記憶。
Hypocycloid的詞源可以追溯到希臘語(yǔ)中的“下回轉(zhuǎn)”或“回轉(zhuǎn)的下部”。它的變化形式包括名詞形式hypocycloid(回轉(zhuǎn)的下部)、形容詞hypocycloid(回轉(zhuǎn)的、下回轉(zhuǎn)的)以及動(dòng)詞hypocyclise(使成回轉(zhuǎn)狀)。
相關(guān)單詞:
1. Cycloid(回轉(zhuǎn)的):這個(gè)詞通常指的是圓弧的回轉(zhuǎn)運(yùn)動(dòng),而hypocycloid則是指更廣義的回轉(zhuǎn)形狀,包括但不限于圓弧。
2. Concycloid(同心回轉(zhuǎn)的):這個(gè)詞指的是與圓心完全重合的回轉(zhuǎn)形狀。
3. Eccycloid(偏心回轉(zhuǎn)的):這個(gè)詞指的是偏離中心線的回轉(zhuǎn)形狀。
4. Hypercycloid(超回轉(zhuǎn)的):這個(gè)詞指的是超過(guò)一個(gè)周期的回轉(zhuǎn)運(yùn)動(dòng)。
5. Hypercycloid(超回轉(zhuǎn)?。哼@個(gè)詞指的是一種特殊的回轉(zhuǎn)弧線,其運(yùn)動(dòng)超過(guò)一個(gè)周期。
6. Hyperbicycle(超自行車):這是一個(gè)虛構(gòu)的名詞,指的是一種具有超長(zhǎng)車輪的自行車,可以看作是hypocycloid在機(jī)械領(lǐng)域的延伸。
7. Cyclotomic(圓周素?cái)?shù)):這是一個(gè)數(shù)學(xué)術(shù)語(yǔ),指的是圓周率的圓周素?cái)?shù)近似值。它與hypocycloid的聯(lián)系在于圓周素?cái)?shù)與圓的性質(zhì)有關(guān),而hypocycloid則與圓的運(yùn)動(dòng)有關(guān)。
8. Cyclotomic polynomial(圓周素?cái)?shù)多項(xiàng)式):這是一個(gè)數(shù)學(xué)概念,與圓周素?cái)?shù)有關(guān),可以看作是hypocycloid在數(shù)學(xué)領(lǐng)域的延伸。
9. Cycloid track(圓弧軌道):這是一個(gè)物理術(shù)語(yǔ),指的是一種由圓弧構(gòu)成的軌道,可以看作是hypocycloid在物理領(lǐng)域的運(yùn)用。
10. Cycloid tool(圓弧工具):這是一種機(jī)械工具,通常用于制造具有特定形狀和運(yùn)動(dòng)的設(shè)備,可以看作是hypocycloid在工具領(lǐng)域的運(yùn)用。
常用短語(yǔ):
1. cycloid motion
2. hypocycloid motion
3. involute curve
4. involute spiral
5. involute gear
6. involute screw
7. involute thread
雙語(yǔ)例句:
1. The hypocycloid motion of a wheel is a type of rotational motion that involves a circular path followed by the center of the wheel.
2. The involute curve is a mathematical model used to describe the shape of many practical objects, such as screws and gears.
3. The hypocycloid motion of a bicycle wheel is a fascinating example of mechanical motion that can be observed in real life.
英文小作文:
Title: The Hypocycloid Motion of a Wheel
The hypocycloid motion is a type of rotational motion that involves a circular path followed by the center of a wheel. It is a fascinating example of mechanical motion that can be observed in real life, and it is also used in various practical applications, such as bicycle wheels and gears. The hypocycloid motion can be traced back to ancient Greek mathematics, where it was first described by Archimedes. It is also closely related to other mathematical concepts, such as the cycloid and the helix. Understanding the hypocycloid motion can help us appreciate the beauty and complexity of nature, and it can also inspire us to create new inventions and technologies.
希望以上回答對(duì)您有所幫助。
名師輔導(dǎo)
環(huán)球網(wǎng)校
建工網(wǎng)校
會(huì)計(jì)網(wǎng)校
新東方
醫(yī)學(xué)教育
中小學(xué)學(xué)歷